Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
preprints.org; 2024.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202404.0623.v1

ABSTRACT

Objective: The study aimed to characterize the changing landscape of circulating SARS-CoV-2 lineages in the local community of Hong Kong throughout 2022. We examined how adjustments to quarantine arrangements influenced the transmission pattern of Omicron variants in a city with relatively rigorous social distancing measures at that time. Methods: In 2022, a total of 4,684 local SARS-CoV-2 genomes were sequenced using the Oxford Nanopore GridION sequencer. SARS-CoV-2 consensus genomes were generated by MAFFT, and the maximum likelihood phylogeny of these genomes were determined using IQ-TREE. The dynamic changes in lineages were depicted in a time tree created by Nextstrain. Statistical analysis was conducted to assess the correlation between changes in the number of lineages and adjustments to quarantine arrangements. Results: By the end of 2022, a total of 83 SARS-CoV-2 lineages were identified in the community. The increase in the number of new lineages was significantly associated with the relaxation of quarantine arrangements (One-way ANOVA, F(5,47)=18.233, p<0.001)). Over time, Omicron BA.5 sub-lineages replaced BA.2.2 and became the predominant Omicron variants in Hong Kong. The influx of new lineages reshaped the dynamics of Omicron variants in the community without fluctuating the death rate and hospitalization rate (One-way ANOVA, F(5,47)=2.037, p=0.091). Conclusion: The study revealed that even with an extended mandatory quarantine period for incoming travelers, it may not be feasible to completely prevent the introduction and subsequent community spread of highly contagious Omicron variants. Ongoing molecular surveillance of COVID-19 remains essential to monitor the emergence of new recombinant variants.


Subject(s)
COVID-19
2.
Nat Commun ; 14(1): 2484, 2023 04 29.
Article in English | MEDLINE | ID: covidwho-2302122

ABSTRACT

Tissues are highly complicated with spatial heterogeneity in gene expression. However, the cutting-edge single-cell RNA-seq technology eliminates the spatial information of individual cells, which contributes to the characterization of cell identities. Herein, we propose single-cell spatial position associated co-embeddings (scSpace), an integrative method to identify spatially variable cell subpopulations by reconstructing cells onto a pseudo-space with spatial transcriptome references (Visium, STARmap, Slide-seq, etc.). We benchmark scSpace with both simulated and biological datasets, and demonstrate that scSpace can accurately and robustly identify spatially variated cell subpopulations. When employed to reconstruct the spatial architectures of complex tissue such as the brain cortex, the small intestinal villus, the liver lobule, the kidney, the embryonic heart, and others, scSpace shows promising performance on revealing the pairwise cellular spatial association within single-cell data. The application of scSpace in melanoma and COVID-19 exhibits a broad prospect in the discovery of spatial therapeutic markers.


Subject(s)
COVID-19 , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Transcriptome , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods
3.
Viruses ; 15(3)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2268208

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health. In an effort to develop novel anti-coronavirus therapeutics and achieve prophylactics, we used gene set enrichment analysis (GSEA) for drug screening and identified that Astragalus polysaccharide (PG2), a mixture of polysaccharides purified from Astragalus membranaceus, could effectively reverse COVID-19 signature genes. Further biological assays revealed that PG2 could prevent the fusion of BHK21-expressing wild-type (WT) viral spike (S) protein and Calu-3-expressing ACE2. Additionally, it specifically prevents the binding of recombinant viral S of WT, alpha, and beta strains to ACE2 receptor in our non-cell-based system. In addition, PG2 enhances let-7a, miR-146a, and miR-148b expression levels in the lung epithelial cells. These findings speculate that PG2 has the potential to reduce viral replication in lung and cytokine storm via these PG2-induced miRNAs. Furthermore, macrophage activation is one of the primary issues leading to the complicated condition of COVID-19 patients, and our results revealed that PG2 could regulate the activation of macrophages by promoting the polarization of THP-1-derived macrophages into an anti-inflammatory phenotype. In this study, PG2 stimulated M2 macrophage activation and increased the expression levels of anti-inflammatory cytokines IL-10 and IL-1RN. Additionally, PG2 was recently used to treat patients with severe COVID-19 symptoms by reducing the neutrophil-to-lymphocyte ratio (NLR). Therefore, our data suggest that PG2, a repurposed drug, possesses the potential to prevent WT SARS-CoV-2 S-mediated syncytia formation with the host cells; it also inhibits the binding of S proteins of WT, alpha, and beta strains to the recombinant ACE2 and halts severe COVID-19 development by regulating the polarization of macrophages to M2 cells.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Polysaccharides , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Drug Repositioning , MicroRNAs , Polysaccharides/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Astragalus propinquus/chemistry
4.
Front Pharmacol ; 13: 905197, 2022.
Article in English | MEDLINE | ID: covidwho-2142190

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains a threat with the emergence of new variants, especially Delta and Omicron, without specific effective therapeutic drugs. The infection causes dysregulation of the immune system with a cytokine storm that eventually leads to fatal acute respiratory distress syndrome (ARDS) and further irreversible pulmonary fibrosis. Therefore, the promising way to inhibit infection is to disrupt the binding and fusion between the viral spike and the host ACE2 receptor. A transcriptome-based drug screening platform has been developed for COVID-19 to explore the possibility and potential of the long-established drugs or herbal medicines to reverse the unique genetic signature of COVID-19. In silico analysis showed that Virofree, an herbal medicine, reversed the genetic signature of COVID-19 and ARDS. Biochemical validations showed that Virofree could disrupt the binding of wild-type and Delta-variant spike proteins to ACE2 and its syncytial formation via cell-based pseudo-typed viral assays, as well as suppress binding between several variant recombinant spikes to ACE2, especially Delta and Omicron. Additionally, Virofree elevated miR-148b-5p levels, inhibited the main protease of SARS-CoV-2 (Mpro), and reduced LPS-induced TNF-α release. Virofree also prevented cellular iron accumulation leading to ferroptosis which occurs in SARS-CoV-2 patients. Furthermore, Virofree was able to reduce pulmonary fibrosis-related protein expression levels in vitro. In conclusion, Virofree was repurposed as a potential herbal medicine to combat COVID-19. This study highlights the inhibitory effect of Virofree on the entry of Delta and Omicron variants of SARS-CoV-2, which have not had any effective treatments during the emergence of the new variants spreading.

5.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1939957

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains a threat with the emergence of new variants, especially Delta and Omicron, without specific effective therapeutic drugs. The infection causes dysregulation of the immune system with a cytokine storm that eventually leads to fatal acute respiratory distress syndrome (ARDS) and further irreversible pulmonary fibrosis. Therefore, the promising way to inhibit infection is to disrupt the binding and fusion between the viral spike and the host ACE2 receptor. A transcriptome-based drug screening platform has been developed for COVID-19 to explore the possibility and potential of the long-established drugs or herbal medicines to reverse the unique genetic signature of COVID-19. In silico analysis showed that Virofree, an herbal medicine, reversed the genetic signature of COVID-19 and ARDS. Biochemical validations showed that Virofree could disrupt the binding of wild-type and Delta-variant spike proteins to ACE2 and its syncytial formation via cell-based pseudo-typed viral assays, as well as suppress binding between several variant recombinant spikes to ACE2, especially Delta and Omicron. Additionally, Virofree elevated miR-148b-5p levels, inhibited the main protease of SARS-CoV-2 (Mpro), and reduced LPS-induced TNF-α release. Virofree also prevented cellular iron accumulation leading to ferroptosis which occurs in SARS-CoV-2 patients. Furthermore, Virofree was able to reduce pulmonary fibrosis-related protein expression levels in vitro. In conclusion, Virofree was repurposed as a potential herbal medicine to combat COVID-19. This study highlights the inhibitory effect of Virofree on the entry of Delta and Omicron variants of SARS-CoV-2, which have not had any effective treatments during the emergence of the new variants spreading.

6.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: covidwho-1890873

ABSTRACT

Graph neural networks (GNNs) are the most promising deep learning models that can revolutionize non-Euclidean data analysis. However, their full potential is severely curtailed by poorly represented molecular graphs and features. Here, we propose a multiphysical graph neural network (MP-GNN) model based on the developed multiphysical molecular graph representation and featurization. All kinds of molecular interactions, between different atom types and at different scales, are systematically represented by a series of scale-specific and element-specific graphs with distance-related node features. From these graphs, graph convolution network (GCN) models are constructed with specially designed weight-sharing architectures. Base learners are constructed from GCN models from different elements at different scales, and further consolidated together using both one-scale and multi-scale ensemble learning schemes. Our MP-GNN has two distinct properties. First, our MP-GNN incorporates multiscale interactions using more than one molecular graph. Atomic interactions from various different scales are not modeled by one specific graph (as in traditional GNNs), instead they are represented by a series of graphs at different scales. Second, it is free from the complicated feature generation process as in conventional GNN methods. In our MP-GNN, various atom interactions are embedded into element-specific graph representations with only distance-related node features. A unique GNN architecture is designed to incorporate all the information into a consolidated model. Our MP-GNN has been extensively validated on the widely used benchmark test datasets from PDBbind, including PDBbind-v2007, PDBbind-v2013 and PDBbind-v2016. Our model can outperform all existing models as far as we know. Further, our MP-GNN is used in coronavirus disease 2019 drug design. Based on a dataset with 185 complexes of inhibitors for severe acute respiratory syndrome coronavirus (SARS-CoV/SARS-CoV-2), we evaluate their binding affinities using our MP-GNN. It has been found that our MP-GNN is of high accuracy. This demonstrates the great potential of our MP-GNN for the screening of potential drugs for SARS-CoV-2. Availability: The Multiphysical graph neural network (MP-GNN) model can be found in https://github.com/Alibaba-DAMO-DrugAI/MGNN. Additional data or code will be available upon reasonable request.


Subject(s)
COVID-19 Drug Treatment , Data Analysis , Drug Design , Humans , Neural Networks, Computer , SARS-CoV-2
7.
Microb Biotechnol ; 15(9): 2488-2501, 2022 09.
Article in English | MEDLINE | ID: covidwho-1864192

ABSTRACT

Numerous viral outbreaks have threatened us throughout history. Here, we demonstrated a nucleic acid-based antiviral strategy named AntiV-SGN. Unlike those CRISPR-mediated methods, AntiV-SGN has advantages of no targets' sequence limitation, such as protospacer adjacent motif (PAM) or protospacer flanking sequence (PFS), being universal for both DNA and RNA viruses. AntiV-SGN was composed of a FEN1 protein and specific hpDNAs targeting viruses' nucleic acid. Its antiviral ability was tested on SARS-CoV-2 and HBV respectively. Reporter assays in human cells first illustrated the feasibility of AntiV-SGN. Then, it was verified that AntiV-SGN destroyed about 50% of live RNAs of SARS-CoV-2 in Vero cells and 90% cccDNA of HBV in HepG2.2.15 cells. It was also able to remove viral DNA integrated into the host's genome. In the mouse model, AntiV-SGN can be used to significantly reduce HBV expression at a level of 90%. Actually, in some cases, when viruses mutate to eliminate PAM/PFS or hosts were infected by both DNA and RNA viruses, AntiV-SGN could be a choice. Collectively, this study provided a proof-of-concept antiviral strategy of AntiV-SGN, which has potential clinical value for targeting a wide variety of human pathogens, both known and newly identified.


Subject(s)
COVID-19 , Nucleic Acids , Viruses , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , DNA Viruses , Humans , Mice , RNA , SARS-CoV-2/genetics , Vero Cells
8.
Front Pharmacol ; 12: 765553, 2021.
Article in English | MEDLINE | ID: covidwho-1785387

ABSTRACT

COVID-19 is threatening human health worldwide but no effective treatment currently exists for this disease. Current therapeutic strategies focus on the inhibition of viral replication or using anti-inflammatory/immunomodulatory compounds to improve host immunity, but not both. Traditional Chinese medicine (TCM) compounds could be promising candidates due to their safety and minimal toxicity. In this study, we have developed a novel in silico bioinformatics workflow that integrates multiple databases to predict the use of honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) as potential anti-SARS-CoV-2 agents. Using extracts from honeysuckle and Huangqi, these two herbs upregulated a group of microRNAs including let-7a, miR-148b, and miR-146a, which are critical to reduce the pathogenesis of SARS-CoV-2. Moreover, these herbs suppressed pro-inflammatory cytokines including IL-6 or TNF-α, which were both identified in the cytokine storm of acute respiratory distress syndrome, a major cause of COVID-19 death. Furthermore, both herbs partially inhibited the fusion of SARS-CoV-2 spike protein-transfected BHK-21 cells with the human lung cancer cell line Calu-3 that was expressing ACE2 receptors. These herbs inhibited SARS-CoV-2 Mpro activity, thereby alleviating viral entry as well as replication. In conclusion, our findings demonstrate that honeysuckle and Huangqi have the potential to be used as an inhibitor of SARS-CoV-2 virus entry that warrants further in vivo analysis and functional assessment of miRNAs to confirm their clinical importance. This fast-screening platform can also be applied to other drug discovery studies for other infectious diseases.

10.
Pharmaceutics ; 14(2)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1699476

ABSTRACT

Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host's response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants' effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.

11.
Int J Environ Res Public Health ; 19(4)2022 02 15.
Article in English | MEDLINE | ID: covidwho-1686800

ABSTRACT

IMPORTANCE: Due to the evolving variants of coronavirus disease 2019 (COVID-19), it is important to understand the relationship between the disease condition and socioeconomic, demographic, and health indicators across regions. BACKGROUND: Studies examining the relationships between infectious disease and socioeconomic variables are not yet well established. DESIGN: A total of 3042 counties in the United States are included as the observation unit in the study. Two outcome variables employed in the study are the control of disease spread and infection prevalence rates in each county. METHOD: Data are submitted to quantile regression, hierarchical regression, and random forest analyses to understand the extent to which health outcomes are affected by demographics, socioeconomics, and health indicators. RESULTS: Counties with better control of the disease spread tend to have lower infection rates, and vice versa. When measuring different outcome variables, the common risk factors for COVID-19 with a 5% level of statistical significance include employment ratio, female labor ratio, young population ratio, and residents' average health risk factors, while protective factors include land size, housing value, travel time to work, female population ratio, and ratio of residents who identify themselves as mixed race. CONCLUSIONS: The implications of the findings are that the ability to maintain social distancing and personal hygiene habits are crucial in deterring disease transmission and lowering incidence rates, especially in the early stage of disease formation. Relevant authorities should identify preventive factors and take early actions to fight infectious diseases in the future.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Female , Humans , Incidence , SARS-CoV-2 , Socioeconomic Factors , United States/epidemiology
12.
Religions ; 12(11):913, 2021.
Article in English | MDPI | ID: covidwho-1480927

ABSTRACT

The COVID-19 pandemic has roused the apocalyptic fear that was foreseen in religious prophecies. This research will focus on the post-9/11 and pre-COVID-19 disaster films, in an attempt to understand the representation and pre-presentation of the collective disaster psychology. Aligned with Jungian film studies, this essay regards films as a convergence of generations’ collective unconscious. Apocalypse may as well be considered the psychic archetypes that emerge in our civilization in the name of religion. This essay aims to construe the ways that apocalyptic archetypes appear and are elaborated in contemporary films, in hope of recognizing the new apocalyptic aesthetics formed in the interval between the two disastrous events. Consistent with the meaning in classic doomsday narratives, the archetypal symbols in these films are found to have carried a dual connotation of destruction and rebirth. Through empirical cinematographic style, these archetypal images are revealed in an immersive way. Disaster films from this time place emphasis on death itself, fiercely protesting against the stagnation of life, and in turn triggering a transcendental transformation of the psyche. Unlike those in the late 1990s, viewing the doomsday crisis through the lens of spectacularity, disaster in these films is seen as a state of body and mind, and death a thought-provoking life experience.

13.
J Glob Antimicrob Resist ; 26: 308-316, 2021 09.
Article in English | MEDLINE | ID: covidwho-1313234

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the trends in serotypes and in vitro antimicrobial susceptibility of Streptococcus pneumoniae causing adult invasive pneumococcal disease (IPD) to dalbavancin, telavancin, tedizolid, eravacycline, omadacycline and other comparator antibiotics from 2017-2020 following implementation of the 13-valent pneumococcal conjugate vaccine (PCV-13) and during the COVID-19 (coronavirus disease 2019) pandemic. METHODS: During the study period, 237 S. pneumoniae isolates were collected from non-duplicate patients, covering 15.0% of IPD cases in Taiwan. Antimicrobial susceptibility testing was performed using a Sensititre® system. A latex agglutination method (ImmuLex™ Pneumotest Kit) was used to determine serotypes. RESULTS: Susceptibility rates were high for vancomycin (100%), teicoplanin (100%) and linezolid (100%), followed by ceftaroline (non-meningitis) (98.3%), moxifloxacin (94.9%) and quinupristin/dalfopristin (89.9%). MIC50 and MIC90 values of dalbavancin, telavancin, tedizolid, eravacycline and omadacycline were generally low. Non-vaccine serotype 23A was the leading cause of IPD across the adult age range. Isolates of serotype 15B were slightly fewer than those of PCV-13 serotypes in patients aged ≥65 years. The overall case fatality rate was 15.2% (36/237) but was especially high for non-PCV-13 serotype 15B (21.4%; 3/14). Vaccine coverage was 44.7% for PCV-13 and 49.4% for the 23-valent pneumococcal polysaccharide vaccine (PPSV-23), but was 57% for both PCV-13 and PPSV-23. CONCLUSION: The incidence of IPD was stationary after PCV-13 introduction and only dramatically decreased in the COVID-19 pandemic in 2020. The MIC50 and MIC90 values of dalbavancin, telavancin, tedizolid, eravacycline, omadacycline were generally low for S. pneumoniae causing adult IPD.


Subject(s)
COVID-19 , Streptococcus pneumoniae , Adult , Aminoglycosides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Humans , Lipoglycopeptides , Oxazolidinones , Pandemics , SARS-CoV-2 , Serogroup , Taiwan/epidemiology , Teicoplanin/analogs & derivatives , Teicoplanin/pharmacology , Tetracyclines , Tetrazoles
14.
Hepatology ; 74(4): 1750-1765, 2021 10.
Article in English | MEDLINE | ID: covidwho-1274697

ABSTRACT

BACKGROUND AND AIMS: We compared risk of acute liver injury and mortality in patients with COVID-19 and current, past, and no HBV infection. APPROACH AND RESULTS: This was a territory-wide retrospective cohort study in Hong Kong. Patients with COVID-19 between January 23, 2020, and January 1, 2021, were identified. Patients with hepatitis C or no HBsAg results were excluded. The primary outcome was mortality. Acute liver injury was defined as alanine aminotransferase or aspartate aminotransferase ≥2 × upper limit of normal (ULN; i.e., 80 U/L), with total bilirubin ≥2 × ULN (i.e., 2.2 mg/dL) and/or international normalized ratio ≥1.7. Of 5,639 patients included, 353 (6.3%) and 359 (6.4%) had current and past HBV infection, respectively. Compared to patients without known HBV exposure, current HBV-infected patients were older and more likely to have cirrhosis. Past HBV-infected patients were the oldest, and more had diabetes and cardiovascular disease. At a median follow-up of 14 (9-20) days, 138 (2.4%) patients died; acute liver injury occurred in 58 (1.2%), 8 (2.3%), and 11 (3.1%) patients with no, current, and past HBV infection, respectively. Acute liver injury (adjusted HR [aHR], 2.45; 95% CI, 1.52-3.96; P < 0.001), but not current (aHR, 1.29; 95% CI, 0.61-2.70; P = 0.507) or past (aHR, 0.90; 95% CI, 0.56-1.46; P = 0.681) HBV infection, was associated with mortality. Use of corticosteroid, antifungal, ribavirin, or lopinavir-ritonavir (adjusted OR [aOR], 2.55-5.63), but not current (aOR, 1.93; 95% CI, 0.88-4.24; P = 0.102) or past (aOR, 1.25; 95% CI, 0.62-2.55; P = 0.533) HBV infection, was associated with acute liver injury. CONCLUSION: Current or past HBV infections were not associated with more liver injury and mortality in COVID-19.


Subject(s)
Acute Lung Injury/epidemiology , COVID-19/mortality , Hepatitis B, Chronic/epidemiology , Acute Lung Injury/blood , Acute Lung Injury/diagnosis , Acute Lung Injury/virology , Adult , Age Factors , Aged , Alanine Transaminase , Aspartate Aminotransferases , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Female , Hepatitis B Surface Antigens/isolation & purification , Hepatitis B virus/immunology , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/virology , Hong Kong/epidemiology , Humans , Male , Medical History Taking/statistics & numerical data , Middle Aged , Retrospective Studies , Risk Assessment/statistics & numerical data , Risk Factors
15.
J Microbiol Immunol Infect ; 55(2): 215-224, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1274336

ABSTRACT

BACKGROUND/PURPOSE: Streptococcus pneumoniae causes pneumonia and other invasive diseases, and is a leading cause of mortality in the elderly population. The present study aimed to provide current antimicrobial resistance and epidemiological profiles of S. pneumoniae infections in Taiwan. METHODS: A total of 252 nonduplicate S. pneumoniae isolates were collected from patients admitted to 16 hospitals in Taiwan between January 2017 and December 2019, and were analyzed. The minimum inhibitory concentration of antibiotics was determined using the Vitek 2 automated system for antimicrobial susceptibility testing. Furthermore, epidemiological profiles of S. pneumoniae infections were analyzed. RESULTS: Among the strains analyzed, 88% were recognized as invasive pneumococcal strains. According to the Clinical and Laboratory Standards Institute criteria for non-meningitis, the prevalence of penicillin-non-susceptible S. pneumoniae demonstrated a declining trend from 43.6% in 2017 to 17.2% in 2019. However, the rate of penicillin-non-susceptible S. pneumoniae was 85.7% based on the criteria for meningitis. Furthermore, the prevalence of ceftriaxone-non-susceptible S. pneumoniae was 62.7% based on the criteria for meningitis. Isolates demonstrated higher susceptibility toward doripenem and ertapenem than toward meropenem and imipenem. An increased rate of non-susceptibility toward levofloxacin was observed in southern Taiwan (15.1%) and elderly patients (≥65 years; 11.4%). Most isolates were susceptible to vancomycin and linezolid. CONCLUSION: Empirical treatment with ceftriaxone monotherapy for pneumococcal meningitis should be carefully monitored owing to its high non-susceptibility rate. The susceptibility rates of most isolates to penicillin (used for treating non-meningitis pneumococcal diseases), carbapenems (ertapenem and doripenem), respiratory quinolones (moxifloxacin and levofloxacin), vancomycin, and linezolid suggested the potential of these antibiotics in treating pneumococcal diseases in Taiwan.


Subject(s)
Meningitis, Pneumococcal , Pneumococcal Infections , Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftriaxone/pharmacology , Doripenem/therapeutic use , Drug Resistance, Bacterial , Ertapenem/therapeutic use , Humans , Levofloxacin/therapeutic use , Linezolid/therapeutic use , Meningitis, Pneumococcal/drug therapy , Microbial Sensitivity Tests , Penicillins/pharmacology , Penicillins/therapeutic use , Pneumococcal Infections/drug therapy , Pneumococcal Infections/epidemiology , Streptococcus pneumoniae , Taiwan/epidemiology , Vancomycin/pharmacology
16.
J Biomed Res ; 35(3): 216-227, 2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1219565

ABSTRACT

The outbreak of COVID-19 caused by SARS-CoV-2 is spreading worldwide, with the pathogenesis mostly unclear. Both virus and host-derived microRNA (miRNA) play essential roles in the pathology of virus infection. This study aims to uncover the mechanism for SARS-CoV-2 pathogenicity from the perspective of miRNA. We scanned the SARS-CoV-2 genome for putative miRNA genes and miRNA targets and conducted in vivo experiments to validate the virus-encoded miRNAs and their regulatory role on the putative targets. One of such virus-encoded miRNAs, MR147-3p, was overexpressed that resulted in significantly decreased transcript levels of all of the predicted targets in human, i.e., EXOC7, RAD9A, and TFE3 in the virus-infected cells. The analysis showed that the immune response and cytoskeleton organization are two of the most notable biological processes regulated by the infection-modulated miRNAs. Additionally, the genomic mutation of SARS-CoV-2 contributed to the changed miRNA repository and targets, suggesting a possible role of miRNAs in the attenuated phenotype of SARS-CoV-2 during its evolution. This study provided a comprehensive view of the miRNA-involved regulatory system during SARS-CoV-2 infection, indicating possible antiviral therapeutics against SARS-CoV-2 through intervening miRNA regulation.

17.
Signal Transduct Target Ther ; 6(1): 165, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1199266

ABSTRACT

The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires an urgent need to find effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). In this study, we developed an integrative drug repositioning framework, which fully takes advantage of machine learning and statistical analysis approaches to systematically integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates against SARS-CoV-2. Our in silico screening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed that CVL218 can interact with the nucleocapsid (N) protein of SARS-CoV-2 and is able to suppress the LPS-induced production of several inflammatory cytokines that are highly relevant to the prevention of immunopathology induced by SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/metabolism , Computer Simulation , Drug Repositioning , Models, Biological , SARS-CoV-2/metabolism , Humans
18.
J Am Soc Nephrol ; 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1197445

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19) are closely related. The effect of AKI on the clinical outcomes of these two conditions is unclear. METHODS: This retrospective, territory-wide cohort study used an electronic public healthcare database in Hong Kong to identify patients with SARS or COVID-19 by diagnosis codes, virologic results, or both. The primary endpoint was a composite of intensive care unit admission, use of invasive mechanical ventilation, and/or death. RESULTS: We identified 1670 patients with SARS and 1040 patients with COVID-19 (median ages, 41 versus 35 years, respectively). Among patients with SARS, 26% met the primary endpoint versus 5.3% of those with COVID-19. Diabetes mellitus, abnormal liver function, and AKI were factors significantly associated with the primary endpoint among patients with either SARS or COVID-19. Among patients with SARS, 7.9%, 2.1%, and 3.7% developed stage 1, stage 2, and stage 3 AKI, respectively; among those with COVID-19, 6.6%, 0.4%, and 1.1% developed stage 1, stage 2, and stage 3 AKI, respectively. In both groups, factors significantly associated with AKI included diabetes mellitus and hypertension. Among patients with AKI, those with COVID-19 had a lower rate of major adverse clinical outcomes versus patients with SARS. Renal function recovery usually occurred within 30 days after an initial AKI event. CONCLUSIONS: AKI rates were higher among patients with SARS than those with COVID-19. AKI was associated with major adverse clinical outcomes for both diseases. Patients with diabetes mellitus and abnormal liver function were also at risk of developing severe consequences after SARS and COVID-19 infection.

19.
J Med Virol ; 93(1): 533-536, 2021 01.
Article in English | MEDLINE | ID: covidwho-1196395

ABSTRACT

Nasopharyngeal swabs (NPS) are widely accepted as specimens for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the current pandemic of coronavirus disease 2019. However, the collection procedures for NPS specimens causes sneezing and coughing in most patients, which generate droplets or aerosol particles that are hazardous to the healthcare workers collecting these specimens. In this study, 95 patient-matched paired deep throat saliva (DTS) and NPS specimens from 62 patients were analyzed. Samples were tested for SARS-CoV-2 by reverse-transcription polymerase chain reaction (RT-PCR). The rates of detection for DTS (53.7%) and NPS (47.4%) samples were comparable (P = .13). It is important to note that the patients should be clearly instructed or supervised during DTS collection. In conclusion, SARS-CoV-2 detection by RT-PCR was equivalent in DTS and NPS specimens.


Subject(s)
COVID-19/diagnosis , Pharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Humans , Nasopharynx/virology , Specimen Handling
20.
J Formos Med Assoc ; 120(9): 1777-1781, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1174364

ABSTRACT

Since December 2019, the outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly around the world. The severity of COVID-19 ranges from asymptomatic carriers to severe acute respiratory distress syndrome (ARDS). Accumulating evidence has shown that COVID-19 may be associated with multiple organ complications including cardiac injury, viral myositis and neurological deficits. Numerous laboratory biomarkers including lymphocytes, platelets, lactate dehydrogenase and creatine kinase (CK) have been associated with the prognostic outcomes of patients with COVID-19. However, dynamic correlations between levels of biomarkers and clinical course have not been studied. Herein, we report a 74-year-old female patient with severe COVID-19 which progressed to ARDS requiring intubation and mechanical ventilation. The laboratory findings showed lymphopenia, hypogammaglobulinemia, and elevated inflammatory biomarkers and CK. She received intensive therapy with hydroxychloroquine, lopinavir/ritonavir, and azithromycin with limited effects. Immunomodulatory treatments with high dose intravenous immunoglobulin and baricitinib were prescribed with satisfactory biochemical, radiographic and clinical recovery. We found an interesting correlation between serum CK elevation and inflammatory biomarkers, which reflected clinical improvement. This case demonstrates that inflammatory biomarkers, cytokines, and CK level correlated with disease severity and treatment response, and combined use of intravenous immunoglobulin and baricitinib is a potential treatment in patients with severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , Rhabdomyolysis , Aged , Azetidines , Female , Humans , Immunoglobulins, Intravenous , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL